
How-To: Build a Web Application with Ajax Part 2

Sending a Request

Technical Note: As of this document revision, 2021.10.04.1.25.PM,
most if not all modern browsers are quite capable or launching Ajax
code.

In the previous portion of this document, we learned of an HTTP
request (XMLHttpRequest) method that supports sending data from
forms to browsers. We can now write a function that uses that
method to make a request. We start the doReq method like this:

Example 2.3. ajax.js (excerpt)

this.doReq = function() {

 if (!this.init()) {

 alert('Could not create XMLHttpRequest

object.');

 return;

 }

};

This first part of doReq calls init to create an instance of
the XMLHttpRequest class, and displays a quick alert if it’s not

successful.

Setting Up the Request

Next, our code calls the open method on this.req — our new
instance of the XMLHttpRequest class — to begin setting up the

HTTP request:

Example 2.4. ajax.js (excerpt)

this.doReq = function() {

 if (!this.init()) {

 alert('Could not create XMLHttpRequest

object.');

 return;

 }

 this.req.open(this.method, this.url,

this.async);

};

The open method takes three parameters:

1. Method – This parameter identifies the type of HTTP request
method we’ll use. The most commonly used methods are GET and
POST.

Methods are Case-sensitive

According to the HTTP specification (RFC 2616), the names of these
request methods are case-sensitive. And since the methods described
in the spec are defined as being all uppercase, you should always
make sure you type the method in all uppercase letters.

2. URL – This parameter identifies the page being requested (or
posted to if the method is POST).

Crossing Domains

Normal browser security settings will not allow you to send HTTP
requests to another domain. For example, a page served from ajax.net
would not be able to send a request to remotescripting.com unless
the user had allowed such requests.

3. Asynchronous Flag – If this parameter is set to true, your
JavaScript will continue to execute normally while waiting for a
response to the request. As the state of the request changes, events
are fired so that you can deal with the changing state of the request.

If you set the parameter to false, JavaScript execution will stop until
the response comes back from the server. This approach has the
advantage of being a little simpler than using a callback function, as
you can start dealing with the response straight after you send the
request in your code, but the big disadvantage is that your code
pauses while the request is sent and processed on the server, and the
response is received. As the ability to communicate with the server
asynchronously is the whole point of an AJAX application, this should
be set to true.

In our Ajax class, the method and async properties are initialized to
reasonable defaults (GET and true), but you’ll always have to set the
target URL, of course.

Setting Up the onreadystatechange Event Handler

As the HTTP request is processed on the server, its progress is
indicated by changes to the readyState property. This property is an
integer that represents one of the following states, listed in order from
the start of the request to its finish:

• 0: uninitialized – open has not been called yet.

• 1: loading – send has not been called yet.
• 2: loaded – send has been called, but the response is not yet

available.

• 3: interactive – The response is being downloaded, and the
responseText property holds partial data.

• 4: completed – The response has been loaded and the request is
completed.

An XMLHttpRequest object tells you about each change in state by

firing a readystatechange event. In the handler for this event,
check the readyState of the request, and when the request

completes (i.e., when the readyState changes to 4), you can handle
the server’s response.

A basic outline for our Ajax code would look like this:

Example 2.5. ajax.js (excerpt)

this.doReq = function() {

 if (!this.init()) {

 alert('Could not create XMLHttpRequest

object.');

 return;

 }

 this.req.open(this.method, this.url,

this.async);

 var self = this; // Fix loss-of-scope in inner

function

 this.req.onreadystatechange = function() {

 if (self.req.readyState == 4) {

 // Do stuff to handle response

 }

 };

};

We’ll discuss how to “do stuff to handle response” in just a bit. For
now, just keep in mind that you need to set up this event handler
before the request is sent.

Sending the Request

Use the send method of the XMLHttpRequest class to start the

HTTP request, like so:

Example 2.6. ajax.js (excerpt)

this.doReq = function() {

 if (!this.init()) {

 alert('Could not create XMLHttpRequest

object.');

 return;

 }

 this.req.open(this.method, this.url,

this.async);

 var self = this; // Fix loss-of-scope in inner

function

 this.req.onreadystatechange = function() {

 if (self.req.readyState == 4) {

 // Do stuff to handle response

 }

 };

 this.req.send(this.postData);

};

The send method takes one parameter, which is used for POST data.
When the request is a simple GET that doesn’t pass any data to the

server, like our current request, we set this parameter to null.

Loss of Scope and this

You may have noticed that onreadystatechange includes a weird-
looking variable assignment:

Example 2.7. ajax.js (excerpt)

var self = this; // Fix loss-of-scope in inner

function

This new variable, self, is the solution to a problem called “loss of
scope” that’s often experienced by JavaScript developers using
asynchronous event handlers. Asynchronous event handlers are
commonly used in conjunction with XMLHttpRequest, and with
functions like setTimeout or setInterval.

The this keyword is used as shorthand in object-oriented JavaScript
code to refer to “the current object.” Here’s a quick example — a class
called ScopeTest:

function ScopeTest() {

 this.message = 'Greetings from ScopeTest!';

 this.doTest = function() {

 alert(this.message);

 };

}

var test = new ScopeTest();

test.doTest();

This code will create an instance of the ScopeTest class, then call
that object’s doTest method, which will display the message
“Greetings from ScopeTest!” Simple, right?

Now, let’s add some simple XMLHttpRequest code to

our ScopeTest class. We’ll send a simple GET request for your web
server’s home page, and, when a response is received, we’ll display
the content of both this.message and self.message.

function ScopeTest() {

 this.message = 'Greetings from ScopeTest!';

 this.doTest = function() {

 // This will only work in Firefox, Opera and

Safari.

 this.req = new XMLHttpRequest();

 this.req.open('GET', '/index.html', true);

 var self = this;

 this.req.onreadystatechange = function() {

 if (self.req.readyState == 4) {

 var result = 'self.message is ' +

self.message;

 result += 'n';

 result += 'this.message is ' +

this.message;

 alert(result);

 }

 }

 this.req.send(null);

 };

}

var test = new ScopeTest();

test.doTest();

So, what message is displayed? The answer is revealed in Figure 2.1.

We can see that self.message is the greeting message that we’re
expecting, but what’s happened to this.message?

Using the keyword this is a convenient way to refer to “the object
that’s executing this code.” But this has one small problem — its
meaning changes when it’s called from outside the object. This is the
result of something called execution context. All of the code inside the
object runs in the same execution context, but code that’s run from
other objects — such as event handlers — runs in the calling object’s
execution context. What this means is that, when you’re writing object-
oriented JavaScript, you won’t be able to use the this keyword to
refer to the object in code for event handlers
(like onreadystatechange above). This problem is called loss of

scope.

If this concept isn’t 100% clear to you yet, don’t worry too much about
it. We’ll see an actual demonstration of this problem in the next
chapter. In the meantime, just kind of keep in mind that if you see the
variable self in code examples, it’s been included to deal with a loss -
of-scope problem.

Figure 2.1. Message displayed by ScopeTest class

Processing the Response

Now we’re ready to write some code to handle the server’s response
to our HTTP request. Remember the “do stuff to handle response”
comment that we left in the onreadystatechange event handler?
We’ll, it’s time we wrote some code to do that stuff! The function
needs to do three things:

1. Figure out if the response is an error or not.
2. Prepare the response in the desired format.
3. Pass the response to the desired handler function.

Include the code below in the inner function of our Ajax class:

Example 2.8. ajax.js (excerpt)

this.req.onreadystatechange = function() {

 var resp = null;

 if (self.req.readyState == 4) {

 switch (self.responseFormat) {

 case 'text':

 resp = self.req.responseText;

 break;

 case 'xml':

 resp = self.req.responseXML;

 break;

 case 'object':

 resp = req;

 break;

 }

 if (self.req.status >= 200 && self.req.status

<= 299) {

 self.handleResp(resp);

 }

 else {

 self.handleErr(resp);

 }

 }

};

When the response completes, a code indicating whether or not the
request succeeded is returned in the status property of
our XMLHttpRequest object. The status property contains the HTTP
status code of the completed request. This could be code 404 if the
requested page was missing, 500 if an error occurred in the server-
side script, 200 if the request was successful, and so on. A full list of
these codes is provided in the HTTP Specification (RFC 2616).

No Good with Numbers?

If you have trouble remembering the codes, don’t worry: you can use
the statusText property, which contains a short message that tells you
a bit more detail about the error (e.g., “Not Found,” “Internal Server
Error,” “OK”).

Our Ajax class will be able to provide the response from the server in
three different formats: as a normal JavaScript string, as an XML
document object accessible via the W3C XML DOM, and as the
actual XMLHttpRequest object that was used to make the request.

These are controlled by the Ajax class’s responseFormat property,
which can be set to text, xml or object.

The content of the response can be accessed via two properties of
our XMLHttpRequest object:

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10

• responseText – This property contains the response from the
server as a normal string. In the case of an error, it will contain
the web server’s error page HTML. As long as a response is
returned (that is, readyState becomes 4), this property will
contain data, though it may not be what you expect.

• responseXML – This property contains an XML document

object. If the response is not XML, this property will be empty.

Our Ajax class initializes its responseFormat property to text, so by
default, your response handler will be passed the content from the
server as a JavaScript string. If you’re working with XML content, you
can change the responseFormat property to xml, which will pull out

the XML document object instead.

There’s one more option you can use if you want to get really fancy:
you can return the actual XMLHttpRequest object itself to your
handler function. This gives you direct access to things like the status
and statusText properties, and might be useful in cases in which
you want to treat particular classes of errors differently — for example,
completing extra logging in the case of 404 errors.

Setting the Correct Content-Type

Implementations of XMLHttpRequest in all major browsers require

the HTTP response’s Content-Type to be set properly in order for
the response to be handled as XML. Well-formed XML, returned with a
content type of text/xml (or application/xml, or
even application/xhtml+xml), will properly populate
the responseXML property of an XMLHttpRequest object; non-XML

content types will result in values of null or undefined for that
property.

However, Firefox, Safari, and Internet Explorer 7 provide a way
around XMLHttpRequest‘s pickiness over XML documents:
the overrideMimeType method of the XMLHttpRequest class. Our

simple Ajax class hooks into this with the setMimeType method:

Example 2.9. ajax.js (excerpt)

this.setMimeType = function(mimeType) {

 this.mimeType = mimeType;

};

This method sets the mimeType property.

Then, in our doReq method, we simply

call overrideMimeType inside a try ... catch block, like so:

Example 2.10. ajax.js (excerpt)

req.open(this.method, this.url, this.async);

if (this.mimeType) {

 try {

 req.overrideMimeType(this.mimeType);

 }

 catch (e) {

 // couldn't override MIME type -- IE6 or

Opera?

 }

}

var self = this; // Fix loss-of-scope in inner

function

Being able to override Content-Type headers from uncooperative
servers can be very important in environments in which you don’t have
control over both the front and back ends of your web application.
This is especially true since many of today’s apps access services and
content from a lot of disparate domains or sources. However, as this
technique won’t work in Internet Explorer 6 or Opera 8, you may not
find it suitable for use in your applications today.

Response Handler

According to the HTTP 1.1 specification, any response that has a code
between 200 and 299 inclusive is a successful response.

The onreadystatechange event handler we’ve defined looks at the
status property to get the status of the response. If the code is within
the correct range for a successful response,
the onreadystatechange event handler passes the response to the

response handler method (which is set by the handleResp property).

The response handler will need to know what the response was, of
course, so we’ll pass it the response as a parameter. We’ll see this
process in action later, when we talk about the doGet method.

Since the handler method is user-defined, the code also does a
cursory check to make sure the method has been set properly before
it tries to execute the method.

Error Handler

If the status property indicates that there’s an error with the request
(i.e., it’s outside the 200 to 299 code range), the server’s response is
passed to the error handler in the handleErr property. Our Ajax class
already defines a reasonable default for the error handler, so we don’t
have to make sure it’s defined before we call it.

The handleErr property points to a function that looks like this:

Example 2.11. ajax.js (excerpt)

this.handleErr = function() {

 var errorWin;

 try {

 errorWin = window.open('', 'errorWin');

 errorWin.document.body.innerHTML =

this.responseText;

 }

 catch (e) {

 alert('An error occurred, but the error message

cannot be '

 + 'displayed. This is probably because of

your browser's '

 + 'pop-up blocker.n'

 + 'Please allow pop-ups from this web site if

you want to '

 + 'see the full error messages.n'

 + 'n'

 + 'Status Code: ' + this.req.status + 'n'

 + 'Status Description: ' +

this.req.statusText);

 }

};

This method checks to make sure that pop-ups are not blocked, then
tries to display the full text of the server’s error page content in a new
browser window. This code uses a try ... catch block, so if users
have blocked pop-ups, we can show them a cut-down version of the
error message and tell them how to access a more detailed error
message.

This is a decent default for starters, although you may want to show
less information to the end-user — it all depends on your level of
paranoia. If you want to use your own custom error handler, you can
use setHandlerErr like so:

Example 2.12. ajax.js (excerpt)

this.setHandlerErr = function(funcRef) {

 this.handleErr = funcRef;

}

Or, the One True Handler

It’s possible that you might want to use a single function to handle
both successful responses and errors. setHandlerBoth, a
convenience method in our Ajax class, sets this up easily for us:

Example 2.13. ajax.js (excerpt)

this.setHandlerBoth = function(funcRef) {

 this.handleResp = funcRef;

 this.handleErr = funcRef;

};

Any function that’s passed as a parameter to setHandlerBoth will
handle both successful responses and errors.

This setup might be useful to a user who sets your
class’s responseFormat property to object, which would cause
the XMLHttpRequest object that’s used to make the request —
rather than just the value of
the responseText or responseXML properties — to be passed to
the response handler.

Aborting the Request

Sometimes, as you’ll know from your own experience, a web page will
take a very long time to load. Your web browser has a Stop button, but
what about your Ajax class? This is where the abort method comes

into play:

Example 2.14. ajax.js (excerpt)

this.abort = function() {

 if (this.req) {

 this.req.onreadystatechange = function() { };

 this.req.abort();

 this.req = null;

 }

};

This method changes the onreadystate event handler to an empty

function, calls the abort method on your instance of
the XMLHttpRequest class, then destroys the instance you’ve
created. That way, any properties that have been set exclusively for
the request that’s being aborted are reset. Next time a request is
made, the init method will be called and those properties will be
reinitialized.

So, why do we need to change the onreadystate event handler?
Many implementations of XMLHttpRequest will fire the onreadystate
event once abort is called, to indicate that the request’s state has
been changed. What’s worse is that those events come complete with
a readyState of 4, which indicates that everything completed as
expected (which is partly true, if you think about it: as soon as we call
abort, everything should come to a stop and our instance
of XMLHttpRequest should be ready to send another request, should
we so desire). Obviously, we don’t want our response handler to be
invoked when we abort a request, so we remove the existing handler
just before we call abort.

Wrapping it Up

Given the code we have so far, the Ajax class needs just two things in
order to make a request:

• a target URL
• a handler function for the response

Let’s provide a method called doGet to set both of these properties,
and kick off the request:

Example 2.15. ajax.js (excerpt)

this.doGet = function(url, hand, format) {

 this.url = url;

 this.handleResp = hand;

 this.responseFormat = format || 'text';

 this.doReq();

};

You’ll notice that, along with the two expected
parameters, url and hand, the function has a third

parameter: format. This is an optional parameter that allows us to
change the format of the server response that’s passed to the handler
function.

If we don’t pass in a value for format, the responseFormat property
of the Ajax class will default to a value of text, which means your
handler will be passed the value of the responseText property. You

could, instead, pass xml or object as the format, which would
change the parameter that’s being passed to the response handler to
an XML DOM or XMLHttpRequest object.

Example: a Simple Test Page

It’s finally time to put everything we’ve learned together! Let’s create
an instance of this Ajax class, and use it to send a request and

handle a response.

Now that our class’s code is in a file called ajax.js, any web pages
in which we want to use our Ajax class will need to include the Ajax

code with a <script type="text/javascript"

src="ajax.js"> tag. Once our page has access to the Ajax code,
we can create an Ajax object.

Example 2.16. ajaxtest.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Strict//EN"

 "https://www.w3.org/TR/xhtml1/DTD/xhtml1-

strict.dtd">

<html xmlns="https://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="Content-Type"

 content="text/html; charset=iso-8859-1"

/>

 <title>A Simple AJAX Test</title>

 <script type="text/javascript"

src="ajax.js"></script>

 <script type="text/javascript">

 var ajax = new Ajax();

 </script>

 </head>

 <body>

 </body>

</html>

This script gives us a shiny, new instance of the Ajax class. Now, let’s
make it do something useful.

To make the most basic request with our Ajax class, we could do

something like this:

Example 2.17. ajaxtest.html (excerpt)

<script type="text/javascript">

 var hand = function(str) {

 alert(str);

 }

 var ajax = new Ajax();

 ajax.doGet('/fakeserver.php', hand);

</script>

This creates an instance of our Ajax class that will make a
simple GET request to a page called fakeserver.php, and pass the

result back as text to the hand function. If fakeserver.php returned
an XML document that you wanted to use, you could do so like this:

Example 2.18. ajaxtest.html (excerpt)

<script type="text/javascript">

 var hand = function(str) {

 // Do XML stuff here

 }

 var ajax = new Ajax();

 ajax.doGet('/fakeserver.php', hand);

</script>

You would want to make absolutely sure in this case that
somepage.php was really serving valid XML and that its Content-
Type HTTP response header was set to text/xml (or something

else that was appropriate).

Continue with Part 3: Create an Ajax Page….

Courtesy: https://www.sitepoint.com/build-your-own-ajax-web-apps/

Modified: 2021.10.04.7.10.AM

Dököll Solutions,. Inc.

https://www.sitepoint.com/build-your-own-ajax-web-apps/

